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ABSTRACT11

Detectability of long time scale variability of oceanic heat content and salinity has been12

examined by ensemble oceanic data assimilations within a coupled ocean-atmosphere-land-ice13

system. The ensemble filter solves for a temporally-varying joint probability density function14

(joint-PDF) of oceanic states, combining the observational PDF and the prior PDF derived15

from the oceanic GCM of the coupled system. Based on the 20th-century (temperature only)16

and 21st-century (ARGO temperature and salinity) oceanic observing networks (OONs), a17

series of perfect-model experiments was performed to examine the impact of temporally-18

varying radiative forcings, initial conditions (ICs) and OONs. A coupled-model simulation19

with the 20th-century historical greenhouse gas and natural aerosol (GHGNA) radiative20

forcings serves as the “truth” from which observations are drawn by the 20th-/21st-century21

OON.22

Results showed both the 20th- and 21st-century OONs provide adequate sampling to23

capture the basin scale heat content variability. Within a few-decade assimilation period,24

the adjustment of oceanic states is dominated by data constraint while the use of historical25

GHGNA records does not have a significant impact on detection skill. Temporally-varying26

GHGNA forced ICs produce a better detection skill than fixed-year GHGNA controlled ICs27

due to the relaxed assimilation shocks from the long time model spinup by temporally-28

varying radiative forcings, especially in deep oceans. In tropical oceans, due to a strong29

T-S relationship from air-sea interaction, the use of T-S covariances enables the filter to30

capture the basic features of salinity variations based on in-situ temperature measurements31

only. Generally, according to the isopycnal nature of water motions, the utilization of T-S32

covariances in ODA is very important to maintain the physical balance in oceanic states.33

However, due to the existence of fresh water forcings at high latitudes and the imperfection34

of the estimated T-S relationship, the salinity observations provided by the ARGO network35

are significant for global oceanic climate studies. In particular, they play a key role for36

correctly reconstructing the North Atlantic thermohaline circulation.37
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1 Introduction38

Coupled model’s uncertainties, or say, biases, lead to modeled climate drift from reality.39

Those uncertainties are caused by inadequate measurements of natural and/or anthropogenic40

forcings and incomplete understanding of their radiative effects, as well as inaccurate nu-41

merical implementation of physical processes. Observations on climate variables such as42

temperature, salinity and currents etc. provide only some samples of climate variations in43

time and space, which are always sparse and noisy. A more accurate assessment of climate44

and climate changes can be achieved by combining coupled model dynamics with observa-45

tional data. We shall refer to this approach as “estimation of climate states.”46

Coupled data assimilation (CDA) uses the dynamics of a coupled model to extract the47

information from observations in order to reconstruct the temporal evolution of climate48

state variables possessing a 3-dimensional structure. The continuous time series of climate49

variables produced by CDA are the estimate of historical climate variations, and provide the50

initial conditions for coupled model climate forecasts or called numerical climate prediction.51

Applications of reconstruction products help further understanding of mechanisms of climate52

variations, like the impact of anthropogenic and natural forcings on climate changes; as53

initial conditions of numerical climate prediction, the assimilation products also provides54

direct economical values for the human activities by initializing coupled models to launch55

numerical climate prediction.56

The accuracy of estimated climate states sensitive to model bias, assimilation methodol-57

ogy and representativeness of an observational network. The CDA system at GFDL (Geo-58

physical Fluid Dynamical Laboratory, NOAA) (Zhang et al. 2007) solves for a temporally-59

varying joint probability density function (joint-PDF) of climate state variables using an60

ensemble filter to combine the observational PDF and a prior PDF derived from coupled61

model dynamics. The system has the ability to mostly maintain both the physical balance62

between state variables and/or coupled components, and the high order moments of the63

joint-PDF. This capability renders the system particularly suitable for solving the problem64
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of climate variations in which error structures of flows are highly anisotropic and strongly65

dependent on seasonal cycle and interannual fluctuations (Zhang et al. 2005; 2007). When a66

CDA system has been developed, the first concern that needs to be clarified is: how much of67

signals in climate variations can be detected based on an existing oceanic observing system?68

As a sequel to the complete evaluation of the CDA system by Zhang et al. (2007), this69

study focuses on detectability of oceanic variations based on the 20th-century XBT (mainly70

expendable bathythermograph, also including CTD and others, see section 3.2) and 21st-71

century ARGO (Array for Real-time Geostrophic Oceanography) networks. This oceanic72

climate detection process is carried out by the oceanic data assimilation (ODA) component73

within the CDA system, i.e., the analysed oceanic states are coupled with an atmospheric74

GCM in which no data constraint is performed.75

Figure. 1 uses the North Atlantic (NA) temperature and salinity trends as an example76

to illustrate what is climate detection. The North Atlantic heat uptake and meridional77

overturning circulation (MOC) have been studied well in model simulations (Delworth and78

Greatbatch 2000; Gent and Danabasoglu 2004). It is therefore a good example to demon-79

strate the climate detection issue that this study tries to address in a perfect model study80

framework. The left/right panels (ab/cd) of Fig. 1 present variations of monthly mean tem-81

perature vs. salinity over the upper (200-1000m) (panels a and c) and lower (1000-5000m)82

(panels b and d) North Atlantic (20-70oN) in the GFDL IPCC (Intergovernmental Panel on83

Climate Change) “control”/“20th century historical” run using the GFDL coupled climate84

model (CM2) (Delworth et al. 2006; Gnanadesikan et al. 2006). Both the control and his-85

torical runs start from the same initial conditions, a 300 year spin-up integration initialized86

from a previous integration (Stouffer et al., 2004). The control run refers to as a 141-year87

integration with the 1860 fixed-year greenhouse gas and natural aerosol (GHGNA) radia-88

tive forcings while the historical run is an integration using the temporally-varying GHGNA89

radiative forcings during the period from January 1861 to December 2000. Figure 1 shows90

that after around 40 years (black dots in all panels) the historical run clearly begins to de-91

part from the control run (each color represents a quarter of the 20th century, e.g., the first92
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quarter is cyan, the last quarter is red, and so on) in both upper and lower portions of the93

North Atlantic Ocean. In particular, it is shown that while the upper ocean temperature94

and salinity of the control run vary only within a relatively small range, their counterparts95

in the historical run exhibit a clear warming and salting trend. The interactions between96

coupling components of CM2 can be schematically demonstrated in Fig. 2. In response97

to the GHGNA radiative forcings, the atmosphere in the coupled model forms its circu-98

lations, which in return provide the sea-surface forcings for the ocean. Ocean establishes99

its thermohaline structure and circulations as a dynamical response to the surface forcings100

(momentum/heat/water fluxes, etc.) from atmosphere, land and sea-ice. Reconstructing101

historical climate variations by data assimilation involves many issues: validation of the as-102

similation methodology, sampling of the observing system and coupled model bias, etc. The103

combination of those aspects and the lack of a complete picture of some important large104

scale oceanic circulations that have a global impact on climate evolution, such as the NA105

MOC described above make it extremely difficult to understand the reconstructed results.106

To reduce the complexity, this study excludes the model bias issue by using a perfect model107

study framework, or called identical twin experiments, in which “observations” are drawn108

from a model simulation, the prior defined true solution for assimilation, so that the accuracy109

of reconstructed signals can be verified with the “truth.” This serves as a very important110

first step for estimation of climate phenomena with multi-decadal variability like the NA111

MOC and their forecast initialization from observed oceanic states.112

Now, we can state the climate detection problem illustrated by Fig. 1 as follows: Given113

an XBT or ARGO network, how much can we retrieve signals of oceanic climate variations114

by sampling oceanic states in the truth based on either network and starting from arbitrary115

initial conditions? In order to answer this question, we need to understand:116

1) What is the impact of the GHGNA radiative forcings on coupled data assimilation?117

2) What is the impact of coupled initial conditions, especially oceanic initial conditions, on118

assimilation quality?119
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3) What is the impact of XBT/ARGO oceanic observing network on estimation of oceanic120

states?121

The rest of this paper is organized as follows: Section 2 and 3 describes the methodology,122

in which section 2 gives the description of the coupled model and the ensemble filter and123

section 3 describes experimental design including perfect-model “twin” experiment configu-124

ration and 4 assimilation experiments. Sections 4 and 5 present and discuss the detection125

results on oceanic heat content and salinity, focusing on the impact of temporally-varying126

radiative forcings, initial conditions and oceanic observing networks. The detectability of the127

thermohaline structure of the NA MOC is particularly analyzed and discussed in section 6.128

Summary and discussions are given in section 7.129

2 Model and coupled assimilation system130

2.1 Model: GFDL fully-coupled GCM – CM2131

As described in the system design and evaluation of the GFDL coupled data assimilation132

system (Zhang et al. 2007), the version of the coupled model used here includes a B-133

grid finite difference atmospheric dynamical core, called CM2.0 (the other using a finite-134

volume atmospheric dynamical core is called CM2.1). The B-grid atmosphere model AM2p12135

(AM2/LM2, GAMDT 2005) has 24 vertical levels and 2.5◦ longitude by 2◦ latitude horizontal136

resolution. The physics package includes a Mellor-Yamada 2.5 dry planetary boundary layer,137

relaxed Arakawa-Schubert convection and a simple diffusive parameterization of the vertical138

momentum transport by cumulus convection. The ocean component is the MOM4 configured139

with 50 vertical levels, in which 22 levels of the top 220 m have 10 m thickness for each, 1◦
× 1◦140

horizontal resolution telescoping to 1/3◦ meridional spacing near the equator. The model has141

an explicit free surface with true freshwater flux exchange between the atmosphere and ocean.142

Parameterized physical processes include k-profile parameterization vertical mixing, neutral143

physics, a spatially-dependent anisotropic viscosity, a shortwave radiative penetration depth144
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that depends on a prescribed climatological ocean color. Insolation varies diurnally and the145

wind stress at the ocean surface is computed using the velocity of the wind relative to the146

surface currents. An efficient time-stepping scheme (Griffies 2005) is employed. More details147

can be found in Gnanadesikan et al. (2006) and Griffies (2005). The Sea Ice Simulator in148

the coupled model is a dynamical ice model with three vertical layers (one snow and two ice)149

and five ice-thickness categories. The elastic-viscous-plastic technique (Hunke and Dukowicz150

1997) is used to calculate ice internal stress, and the thermodynamics is a modified Semtner151

three-layer scheme (Winton 2000). The interactions of these four major model components152

(ocean/atmosphere/land/sea-ice) in the coupled system are schematically illustrated in Fig. 2153

(black arrows represent the exchange fluxes between coupling components).154

2.2 CM2’s spread and probability distribution’s maintenance of155

oceanic states156

The probabilistic nature of the state evolution of a coupled model system is the basis of im-157

plementing coupled ensemble data assimilation. An ensemble-based filter uses a Monte Carlo158

approach to simulate the model-described prior PDF by finite-ensemble model integrations.159

It has been asked frequently how many members are appropriate in ensemble-based data160

assimilation? This is a very complicated question for which there exists no simple answer.161

For a certain ensemble assimilation algorithm, a large ensemble size used is expected to162

maximize signal-to-noise ratio of assimilation but it is stronly constrained by the availability163

of computation resources. Even under a perfect model assumption, the signal-to-noise ratio164

of assimilation still depends on many other factors such as the temporal and spatial scales165

that assimilation model can resolve (i.e. the internal variablility of assimilation model), how166

to maintain the spread of the stochastic dynamical system (e.g. the representativeness of167

ensemble), and the features of observations (e.g. the representativeness of observations) etc.168

In order to illustrate the CM2’s stochastic nature and how the oceanic states obtain and169

maintain their spread in the coupled model, Fig. 3 presents the time mean ensemble spread170
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of atmospheric and oceanic states over the last 10 years of a 25-year integration of CM2171

with 1860 fixed-year radiative forcings, starting from initial atmospheric perturbations only.172

Each solid line represents the departure of an individual ensemble member’s atmospheric173

(upper panel) and oceanic (lower panel) temperature profile from the ensemble mean; dark174

dotted lines show the vertical variation of the standard deviation of 6 ensemble members;175

6-member ensemble integrations are initialized from 6 yearly-separate atmospheric states176

(including land) one year apart from the same simulation and a common oceanic state177

(including ice) (i.e. ICc described in section 3). Due to the strong internal variability178

(nonlinearity) of atmospheric flows, perturbations in both initial conditions and sea-surface179

temperatures (SSTs) generated (as a consequence of ocean-atmosphere interaction) maintain180

the ensemble spread of the atmospheric state. The ensemble spread of oceanic states reflects181

the sensitivity of the ocean model to the surface forcings provided by the atmosphere. Due182

to effects of mixing and convection in upper ocean, atmospheric disturbances can easily183

penetrate the upper ocean layers and alter the thermocline where the largest oceanic spread184

is found. In fact, the ensemble spread of oceanic temperature near the surface has the same185

amptitude as the ensemble spread of atmospheric temperature in lower troposphere. Below186

thermocline, the uncertainty propagates toward deeper ocean on a longer time scale. This187

kind of uncertainty can reach deeper than 2000 m in regions such as the North Atlantic,188

where deep convection is active. Nevertheless the global mean spread appears very small at189

the depth of 2000 m in Fig. 3.190

From Fig. 3, we learned that once an initial error occurs in the atmosphere or other191

coupled model components, the strong internal variability of atmospheric flows and oceanic192

state’s responses to atmospheric forcings will eventually produce inter-ensemble variations193

of oceanic states through feedbacks between coupled model components. Experiments (e.g.,194

Zhang et al. 2007) show that due to capturing the nature of oceanic states’ uncertainty195

in the coupled model which consists of a course resolution OGCM, this kind of ensemble196

system is fairly reliable that it can work with a relatively small ensemble size. In addition,197

covariance filtering, or called covariance localization, and observation smoothing techniques198
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(Zhang et al. 2005; 2007) also help enhance the signal-to-noise ratio and maintain the199

ensemble spread of the system when a small ensemble size is used. More test experiments in200

Zhang et al. (2007) also show that although a small ensemble size (6 members) is used, the201

coupled ensemble assimilation system is able to provide such a reliable T-S relationship that202

the multi-variate assimilation scheme (mainly utilizing T-S cross-covariances) dramatically203

enhances the assimilation’s signal-to-noise ratio relative to a univariate scheme. Considering204

the character of the coupled model ensemble and those practical techniques as well as the205

computation resource constraint, we continously use 6 members in this and all follow-up206

studies wherever a “twin” experiment is conducted, while a much larger ensemble size (up207

to 24 members) for real data assimilation (will be documented in separete reports, also see208

related discussions in section 7).209

2.3 Assimilation scheme: A coupled ensemble filter210

Under the framework of a filtering theory, the temporal evolution of states in a coupled211

system can be viewed as a continuous stochastic dynamical process described by a vectorized212

stochastic differential equation (Jazwinski, 1970) as dxt/dt = f(xt, t) + G(xt, t)wt. Here, xt213

is an n-dimensional vector representing the coupled model state at time t (n is the size214

of the model state), f is an n-dimensional vector function, wt is a white Gaussian process215

(uncorrelated in time) of dimension r with mean 0 and covariance matrix S(t) while G216

is an n × r matrix. The first and second terms on the right hand side in the equation217

represent respectively the deterministic modeling and uncertainty contributions in a coupled218

system. In this context, coupled data assimilation (CDA) solves the problem of sampling the219

probability of the state of a coupled dynamical system given noisy and sparse measurements.220

This study addresses how to retrieve the oceanic climate variations by using only an221

oceanic observing system within the CDA framework. The oceanic data assimilation (ODA)222

process in the CDA system adjusts directly the oceanic states using observed data in the223

ocean by an ensemble filter. The ensemble filter solves for a temporally-varying joint proba-224
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bility density function (joint-PDF) of coupled state variables in a straight forward manner,225

in terms of discrete representation of joint-PDF by finite-size ensemble members. The fil-226

tering process combines the PDF of oceanic observations and a prior PDF derived from227

the dynamically-coupled model, a continuous stochastic dynamical process, described by the228

vectorized partial differential equation above. This assimilation process is schematically il-229

lustrated in Fig. 4, where the filtering process refers to as a linear regression based on error230

covariances between the analyzed and observed state variables. The details of the filtering231

algorithm and its implementation into CM2 can be found in Zhang et al. (2007). The232

coupled ensemble filter has following several advantages over traditional data assimilation233

approaches, e.g. optimal interpolation (OI), 3-dimensional variational (3DVar) and 4DVar234

etc., especially for climate detection applications of particular interest to this study:235

1) It is convenient to carry out multi-variate data assimilation using cross-covariances be-236

tween state variables, which are evaluated in a straight forward manner by the ensemble237

model integrations. The multi-variate assimilation scheme plays a centrally-important238

role in maintaining the physical balance described by the temperature-salinity (T-S)239

relationship in ocean.240

2) Error covariances used at each analysis step, evaluated instantaneously by a whole en-241

semble of state variables, are fully flow-dependent and anisotropic. The flow-dependent242

and anisotropic nature of error statistics allows the assimilation to capture features of243

local waves and the vertical variation of oceanic circulations (see the bottom panel of244

Fig. 3).245

3) Higher-order moments of the joint-PDF maintained by the ensemble model integrations246

allow the assimilation to sustain the nonlinearity in the long term evolution of oceanic247

circulations. One example is the bi-modal feature of the Atlantic thermohaline circu-248

lation (see the schematical illustration in Fig. 4).249

4) Data assimilation conducted within a coupled model allows the coupled dynamics to im-250

pact the assimilation results through feedback processes between coupled components.251

10



In this case, the ODA based on an ocean observing network provides constrained SSTs252

to the atmosphere thereby improving the estimate of the atmospheric states. In re-253

turn, the improved atmospheric momentum, heat and water fluxes may yield improved254

estimates of background error covariances used in ODA.255

3 Experimental design256

3.1 Perfect model study “twin” experiments257

The proof-of-concept of coupled model data assimilation using an ensemble filtering algo-258

rithm has been given in Zhang et al. (2007). There, the results of a primary assimilation259

test, a long perfect model ODA experiment based on the 20th-century in situ temperature260

observations only, show that the variability of oceanic heat content is reconstructed very261

well by using coupled dynamics to extract observational signals within the CDA system.262

The CDA system is able to sustain dynamical balances and the physical consistency among263

different state variables and different coupled model components.264

Reconstruction of oceanic states using coupled model and real observed data is a complex265

task, in which model bias is a big challenge that would be along the line for long time. This266

study serves as the first step of our long term efforts toward the reconstruction of oceanic267

climate variations utilizing models and data. In order to investigate the roles played by268

initial conditions, external radiative forcings and oceanic observing network play in detecting269

oceanic variability by data within a coupled system, this study still employs a perfect model270

study framework, a particular type of observing system simulation experiments (OSSEs) that271

are based on a real oceanic observing network (OON). Within those OSSEs the complexity272

of the climate detection issue is decreased by excluding model bias. What follows describes273

the OSSEs that are used in this study.274

First, same as in Zhang et al. (2007), the dataset (monthly-mean) of the 25-year (1976-275

2000) oceanic/atmospheric/land/sea-ice state variables produced by the GFDL’s B-grid cli-276
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mate model (CM2.0) IPCC standard (also called h1) historical integration defines completely277

the features of climate variations during this period, called the “truth,” which serve as a tar-278

get for climate detection. This standard IPCC historical run was initialized by a 300-year279

spinning up with 1860 fixed-year radiative forcings from the previous integration (Stouffer et280

al. 2004). Then it was integrated with temporally-varying GHGNA radiative forcings from281

1861 to 2000. Second, in order to produce daily hypothetical observation data, the IPCC282

historical integration is re-run starting from 1 Janury 1976 up to 31 December 2000. Model283

observation data are based on oceanic temperature and salinity profiles from a certain OON284

described in item 3 of section 3.2. Then the “truth” is projected onto the chosen OON to285

form the “observed” data. For example, the 20th-century OON only samples the “truth”286

oceanic temperature at the locations and depths shown in Fig. 5 while the 21st-century OON287

samples both oceanic temperature and salinity of the “truth” at the locations and depths288

shown in Fig. 6. As described in Zhang et al. (2007), the sampling process is basically a289

tri-linear interpolation, also including superimposition of white noise to simulate random290

observational errors. The standard deviation of the white noise is 0.5◦C for temperature and291

0.1 PSU for salinity at the sea surface and exponentially decaying to zero at 2000 m depth.292

3.2 3 aspects to be examined293

Once the model observation data are ready, without worrying about the influence of model294

bias, we can examine the impact of the following three factors on the detection of oceanic295

heat content and salinity variability.296

1) Green House Gas and Natural Aerosol (GHGNA) Radiative Forcings: For a cou-297

pled ocean-atmosphere-land-ice system, the GHGNA radiative effect serves as the ut-298

most external forcing. Previous studies have shown that GHGNA radiative effects are299

directly responsible for a global scale warming trend (e.g. Manabe 1979; Manabe and300

Stoufer 1979). Question here is: How important are the historical GHGNA radiative301

forcings in detecting oceanic variability using models and data? In other words, how302
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well does an oceanic observing network samples the historical GHGNA radiative effects303

given a coupled system? In order to answer the questions above, two types of GHGNA304

radiative forcings – 1860 fixed-year (Q0) and temporally-varying historical (Qt) – are305

applied to the CM2 integrations in the assimilation experiments. Comparing the as-306

similation results using Q0 and Qt holding everything else as the same we can analyze307

and discuss the impact of GHGNA radiative forcings on detection skills.308

2) Coupled (Oceanic) Initial Conditions (ICs): As shown in Fig. 3, unlike atmosphere309

having strong internal variability from top to bottom, ocean has relatively strong vari-310

ability in upper and very week variability in deep. Since the availability of oceanic311

observations is limited within upper oocean (up to 500 m for XBT and up to 2000 m312

for ARGO, for instance) and assimilation time length is usually limited (from years to313

decades), we are concerned how oceanic ICs from which the assimilation starts impact314

the assimilation skill. Two sets of ensemble initial conditions described below, which315

contain different oceanic states, i.e. the controlled (denoted by ICc) and the forced316

(denoted by ICf ), are used to examine the impact of initial conditions on the climate317

detection.318

The ICc is formed by combining the atmosphere and land states at 00UTC 1 January319

of years 0041, 0042, 0043, 0044, 0045 and 0046 with the ocean and ice state at 00UTC 1320

January 0044 of the GFDL IPCC control run using 1860 fixed-year GHGNA radiative321

forcings. The ICf is formed by combining the atmosphere and land states at 00UTC322

1 January of years 1973, 1974, 1975, 1976, 1977, 1978 with the ocean and ice state at323

00UTC 1 January 1976 of the GFDL IPCC h3 historical run using temporally-varying324

GHGNA radiative forcings during the period from 1861 to 2000. The IPCC control/h3325

historical run was initialized by the coupled states at the 300th-year/380th-year spin326

up with 1860 fixed-year radiative forcings from the previous integration (Stouffer et327

al. 2004). Since they are driven by different GHGNA radiative forcings for 115 years,328

the oceanic states in ICc and ICf will be shown to be very different. Comparing the329

assimilation results from ICc and ICf with the same other conditions we can investigate330
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the impact of coupled (oceanic) ICs on assimilation quality.331

3) Oceanic Observing Network (OON): What scale variability in climate variations332

can be resolved by an oceanic observing system is a critically-concerned question in333

climate assessment using models and data. Two oceanic observing networks – the334

20th-century OON and the 21st-century OON – are examined in this study.335

The network of the 20th-century vertical profiles (also referred to as NXBT ) is taken336

from World Ocean Database (WOD) maintained by National Oceanographic Data337

Center (NODC). The profile types are largely the same as used by Levitus (2005) for338

World Ocean Analysis (WOA), primarily from XBT (Expendable Bathythermograph),339

but also from CTD (Conductivity-Temperature-Depth), DRB (Drifting Buoy), OSD340

(Ocean Station Data), UOR (Undulating Oceanographic Recorder) and MRB (Moored341

Buoy). XBTs are the largest single source of oceanic temperature data, being dis-342

tributed primarily along commercial shipping routes. Their spacial coverage is inho-343

mogeneous, and particularly less accessible in the Arctic and Southern Oceans. Since344

salinity data are so sparse, only temperature data are considered for the 20th-century345

OON. Figure 5 shows the locations of the 20th-century OON for January 1986 (left)346

and 1991 (right) profiles whose depth exceeds 500 m (upper) and 1000 m (lower) [cor-347

responding total profiles shown in Fig. 4 of Zhang et al. (2007)]. Compared to Fig. 4348

of Zhang et al. (2007), Fig. 5 shows a dramatic drop in the number of profiles with349

depth. For example, less than one third of all profiles extend below 500 m; and less350

than 1 in 30 extend below 1000 m. Some of the XBT profiles can reach a depth of 500351

m while profiles below 1000 m are provided mostly by the vertically-high resolution352

CTD.353

In order to focus on the capability of ARGO profiles, here the 21st-century OON354

includes only the ARGO deploy (also referred to as NARGO), which excludes altime-355

try data and conventional shipping-route-based measurements. Particularly, since the356

ARGO deploy is not finished yet, the 2005 ARGO network as shown in Fig. 6 for Jan-357
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uary 2005 temperature (left) and salinity (right), is used in this study. (The impact of358

assimilating altimetry data, a part of the real 21st-century oceanic observing system,359

will be examined in a separate study.) Figure 6 shows that unlike NXBT , NARGO has360

nearly uniform spatial coverage, especially in the Southern Hemisphere where the cov-361

erage of NARGO is much better than the coverage of NXBT . In addition, the number362

of profiles in NARGO does not decrease significantly with depth [Compare the profiles363

below 1000 m (lower panels) to ones below 500 m (upper panels)].364

3.3 4 assimilation experiments and 2 model simulations365

Once the subsets of hypothetical oceanic observations based on different OONs are ready, the366

following 4 assimilation experiments are conducted (although a CDA framework is employed,367

since only oceanic observations are actually assimilated all assimilation experiments in this368

study are called ODA):369

Exp-ICcQ0NXBT : using the 20th-century OON, 1860 fixed-year GHGNA radiative forcings370

and controlled initial conditions, ICc, which do not contain any information about371

temporally-varying radiative forcings.372

Since only temperature with non-uniform spatial distribution is sampled in the 20th-373

century OON and fixed-year radiative forcings are used in the model integrations, this374

assimilation experiment is the hardest scenario for detecting climate variability.375

Exp-ICcQtNXBT : same as Exp-ICcQ0NXBT except for using temporally-varying GHGNA376

radiative forcing in the assimilation model integration.377

By comparing the results of this experiment with those of Exp-ICcQ0NXBT , we try to378

understand the impact of temporally-varying GHGNA radiative forcings on the climate379

detection problem.380

Exp-ICfQtNXBT : same as Exp-ICcQtNXBT except for using forced initial conditions, ICf ,381

which contain information of temporally-varying GHGNA radiative forcings.382
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Comparison of results from Exp-ICcQtNXBT and Exp-ICcQ0NXBT acknowledges us the383

sensitivity of detection quality to the initial states from which the assimilation starts.384

Exp-ICfQtNARGO: same as Exp-ICfQtNXBT except for using the 21st-century OON, NARGO,385

to replace NXBT .386

With the replacement of NARGO that provides both temperature and salinity observa-387

tions, this experiment is expected to represent the best scenario for detecting climate388

variability.389

As the references for verification, the following two model control integrations (or called390

free model runs) with no data constraint are also conducted:391

Ctl-ICcQ0: Initialized from ICc and using the 1860 fixed-year GHGNA radiative forcings.392

Ctl-ICfQt: Initialized from ICf and using temporally-varying GHGNA radiative forcings.393

4 Variability of oceanic heat content394

These 4 ODA experiments described in the last section have been conducted within the395

GFDL CDA system. All ODA experiments in this study use a multi-variate analysis scheme396

(indicated schematically by the red arrows in Fig. 2), in which each observation (oceanic397

temperature denoted by Tobs, or oceanic salinity denoted by Sobs) is allowed to impact all398

oceanic state variables (i.e. temperature, salinity and currents). The top 50 m oceanic ob-399

servations in particular are allowed to directly impact the sea-surface wind stress to increase400

the constraint of oceanic observations to the coupled model in the absence of atmospheric401

data constraint. As described in Zhang et al. (2007), a weighting function Ω(a,d) (Gaspari402

and Cohn 1999) is used for covariance localization to limit the noise in covariance estimate403

by a finite-ensemble size (Hamill et al. 2001). Given the sparsity of oceanic observations404

in space and time and ocean model drift (associated with weak internal variability), it is405

important to apply the filtering technique to the horizontal and the vertical domain and406
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a time window (Zhang et al. 2005). In order to maintain the physical balance mostly, a407

uniform 1000 km horizontal correlation scale [the parameter a in Ω(a,d)] is used for all ana-408

lyzed variables (U ,V ,T ,S and τx, τy) in all experiments (here d is the real distance between409

observation location and the analyzed grid point). Vertically, the value of a is set to be the410

thickness of two gridboxes above or below the observational location. Since the observational411

impact is extended according to the thickness of the gridbox around the bottom of a profile,412

this setting of a is expected to reduce the vertical discontinuity of the analysis adjustment413

at the bottom of observed profiles. For example, if the bottom of profile is around 1000 m,414

the observational impact at the bottom is extended to around 1360 m and if the bottom of415

profile is around 2000 m, the observational impact at the bottom is extended to around 2850416

m by the function Ω(a,d). Other parameters are the same as in Zhang et al. (2007).417

4.1 Impact of temporally-varying GHGNA radiative forcings418

The motivation to conduct Exp-ICcQ0NXBT and Exp-ICcQtNXBT is to try to answer the419

following two questions: First, given that the atmosphere serves as the driver of oceanic420

circulations, the different radiative forcings in the atmosphere may make the assimilation421

model slightly biased. How does the ODA perform with such a slightly biased oceanic422

model? Second, how much information of temporally-varying GHGNA radiative forcings is423

represented by an OON?424

Time series of oceanic heat content, i.e. potential temperature anomalies averaged over425

top 700 m (Fig. 7) and 2000 m (Fig. 8), from 4 assimilation experiments are shown for426

individual ocean basins and the world ocean in Figs. 7 and 8. In those Figs., Exp-ICcQ0NXBT427

and Exp-ICcQtNXBT lines are plotted by dashed- and solid-red lines, respectively. As shown428

by the background colors in Fig. 5, the ocean basins examined here are the same as in Zhang429

et al. (2007) following Levitus et al. (2000; 2005). The 2 free coupled model runs, Ctl-430

ICcQ0 and Ctl-ICfQt, are plotted by dashed- and solid-green lines, respectively as reference.431

The former (dashed-green line) serves as the control case of Exp-ICcQ0NXBT with no data432
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constraint for recovering the target (or the truth, plotted by black lines – again the GFDL433

IPCC h1 historical run). For comparison, all anomalies are computed using the climatology434

of the “truth.” In all basins, the heat content of the “truth” (black lines in Fig. 7) shows a435

non-uniform warming trend during the 25-year target period, being weakest in the Arctic and436

strongest in the Indian Ocean, while the control (dashed-green) with the fixed-year forcings437

only shows the non-trend oscillations. The world oceanic heat content in the “truth” shows438

a warming trend of 0.2oC during the 25-year period, with two interuptions corresponding to439

the volcanic activities during the early 1980’s and 1990’s.440

Figures 7 and 8 also show that after a few years of spinup, the heat content decadal441

variability and multi-decadal trend over top 700 m and top 2000 m are retrieved well by442

both Exp-ICcQ0NXBT and Exp-ICcQtNXBT in all basins and the world ocean. The 20-year443

averaged root mean squared (RMS) and mean errors are dramatically reduced through both444

ODA experiments comparing to the free model simulation (Ctl-ICcQ0) (Compare columns 4445

and 5 to column 1 in Table 1 and 2). In particular, both assimilations reduce heat content446

RMS errors as the same rate (56% for top 700 m and 42% for top 2000 m) for the world447

ocean and slightly different rate in individual basins. These results show that the assimilation448

with fixed-year or temporally-varying GHGNA radiative forcings produce overall equivalent449

assimilation quality.450

Quantitative error statistics presented in columns 4 and 5 of Table 1 and 2 show that the451

assimilation skill (for both experiments Exp-ICcQ0NXBT and Exp-ICcQtNXBT ) is different452

for each basin. The best is the North Pacific Ocean (the RMS error reduction is around 70%453

for both top 700 m and top 2000 m) and the worst is the North Indian Ocean (the RMS454

error reduction is around 15% for top 700 m but the RMS errors are increased for top 2000455

m by both assimilations). Next, starting from how and why the assimilation has different456

performance in different basins, we try to understand the mechanism why the temporally-457

varying GHGNA radiative forcings have little impact on assimilation quality.458

The adjustment of oceanic states produced by ODA in a CDA system is determined by459
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three factors: 1) direct and indirect oceanic data constraints, 2) dynamical constraints due to460

the interactions of oceanic circulations in different ocean basins and/or the spatial structure461

of gyres, and 3) external forcing constraints imposed by other components of the coupled462

model, e.g. Ekman friction effects from the atmospheric wind stress at the sea-surface and463

freshwater forcings from precipitation and ice melting etc. Item 3) usually refers to as the464

waters close to the sea-surface; once external forcings drive out oceanic circulations, the465

effects shall be accounted into the dynamical constraint of item 2). A dynamical constraint466

refers to as the tendency of a model to maintain an existing circulation structure according to467

the law of fluid motions. In data assimilation, dynamical constraint is a double edged sword.468

On one hand, the model dynamics play an essential role in extracting the observational469

information. This is why assimilation skills always strongly relies on the covariance model470

being used and in sparse-data or no-data regions the assimilation can still make adjustments471

from data constraints in neighboring regions. On the other hand, a too strong dynamical472

constraint means that an efficient data constraint becomes difficult due to the strong inertia of473

circulations. Usually, data constraint produces relatively faster adjustments than dynamical474

or external forcing constraints.475

Although there is a sparse data coverage in the Southern Ocean and almost none in the476

Arctic Ocean, the ODA process is still able to gradually nudge the heat content anomalies in477

both ocean basins towards the truth. This is due to the dynamical constraint of the coupled478

model responding to the data adjustments in other oceans and it causes the RMS errors479

of the Southern Arctic Oceans reduced around 40% and 30% respectively, in a two-decade480

time scale. These dynamical constraints include interactions between the circulations in481

the Southern Ocean and other neighbouring oceans such as the South Pacific etc., as well482

as the ice-water interactions and ice-atmosphere flux exchanges in the Arctic. As pointed483

in Zhang et al. (2007), the spinup time scale in the ODA is strongly associated with the484

OON’s density; the assimilation adjustment in these two oceans is therefore the slowest485

compared to other basins. Since data constraint is dominant in the upper oceans, except for486

the Arctic and Southern Oceans, the interannual variability of the truth heat content over487
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top 700 m of other oceans is well reproduced (Fig. 7) in both experiments. Because of the488

relative sparseness of data coverage in the Indian Ocean in the 20th-century OON, a clear489

difference between the assimilated heat content anomaly and the truth can be distinguished490

in the South and North Indian Oceans as well as the entire basin. Due to the reduced data491

constraint by the depth (see left panels of Fig. 5) the assimilation bias increases in deep ocean492

(Fig. 8), especially in the regions where data becomes very sparse or non-existent (the North493

Indian Ocean, for instance). In particular, the rich spectrum of active circulations driven by494

the Indian monsoon in the North Indian Ocean and the heat and salt exchanges between the495

Indian and Pacific Oceans by the through flows over the Indoniesian archipelagos make more496

difficult for the ODA to resolve the sub-annual variability in that region. Due to dynamical497

constraints like the vertical structure of subtropical and/or subpolar gyres in the Pacific and498

Atlantic Oceans, the large time scale heat content variations and trend can still be detected499

by the assimilation process down to a depth of 2000 m over there (Fig. 8).500

In ODA, oceanic data constraints attempt to immediately adjust oceanic states toward501

what data sample. Responding to data constraints, dynamical constraints of ocean model502

blend and absorb data constraint information by a slower time scale. Eventually the balanced503

states between data and dynamical constraints form the assimilation equilibria. In this504

process, if we view the basin waterbody as a whole, the atmosphere provides wind stress and505

heat/water fluxes to join the dynamical constraints. As shown in Zhang et al. (2007), the506

ODA-generated SSTs have strong impact on these atmospheric conditions. The following507

results shall illustrate that in the coupled assimilation framework, the role of the GHGNA508

radiative forcings to drive the atmospheric circulations is negligible relative to the role of the509

ODA-generated SSTs.510

Comparing the results of Exp-ICcQtNXBT (solid-red lines in Figs. 7 and 8, column 5 in511

Tables 1 and 2) to Exp-ICcQ0NXBT (dashed-red in Figs. 7 and. 8, column 4 in Tables 1 and 2),512

it is observed that based on the same OON and starting from the same initial conditions,513

the heat content variations produced by Exp-ICcQ0NXBT and Exp-ICcQtNXBT are nearly514

indistinguishable in most of basins and the world ocean except for the Arctic Ocean. In515
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the Arctic Ocean, a noticeble difference between Exp-ICcQ0NXBT and Exp-ICcQtNXBT is516

observed after the spinup of a few years, but comparing to the difference between either517

assimilation and the control (dashed-green line) it is very small. These results mean that518

within a few decade assimilation time scale, the temporally-varying radiative forcings do not519

have significant impact on the reconstruction of the oceanic heat content variations by the520

ODA in a coupled system. In other words, the information of ocean heat uptake from Qt to521

form heat content’s interannual variability and decadal trend is sufficiently retrieved by the522

ODA based on the OON used. Again, the reason is that the ODA-generated SSTs drive the523

atmospheric circulations dominantly over the temporally-varying GHGNA radiative forcings,524

which provide the ocean’s upper boundary conditions. The phenomenon of the Arctic Ocean525

implies that for the regions covered by ice the role of GHGNA radiative effects increases and526

the SSTs’ role decreases, but both slightly.527

Looking at the spatial distribution of large time scale heat content variations, panel a528

in Fig. 9/10 exhibits the time tendency of the 10-year mean “true” oceanic heat content529

of top 700/2000 m during the 1980’s and the 1990’s. Panels b, c, d, e, f present the er-530

ror distributions of the 2-decade time tendency for 1 control simulation (b for Ctl-ICfQt)531

and 4 assimilation experiments (c, d, e and f for Exp-ICcQ0NXBT , Exp-ICcQtNXBT , Exp-532

ICfQtNXBT and Exp-ICfQtNARGO respectively). Panels a of Figs. 9 and 10 show that the533

major time variations over the 2 decades (a warming trend in most basins) occur in the re-534

gions of the subtropical and subpolar gyres of the Pacific and Atlantic Oceans in the Northern535

Hemisphere, and the subpolar region of the Southern Hemisphere where the Antarctic cir-536

cumpolar circulation is active. Although they use the same temporally-varying GHGNA537

radiative forcings, Ctl-ICfQt and the truth still produce different phases for the gyres and538

the Antarctic circumpolar circulation and the Ctl-ICfQt’s warming trend is much weaker539

than the truth in most basins. This happens because these two integrations use different ini-540

tial conditions at a century ago (see sections 3.1 and 3.2) and they make the different model541

climate. Both Exp-ICcQ0NXBT and Exp-ICcQtNXBT mostly retrieve the 2-decade variations542

over the Pacific and Atlantic Oceans wherever there exists reasonable data coverage. The543
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largest detection errors are distributed over the Southern Ocean, Indian Ocean and North544

Atlantic; the former two can basically be attributed to the sparseness of data coverage in the545

20th-century OON; the latter one is associated with complex factors like the North Atlantic546

meridional overturning circulation (MOC) and the ice-water interaction etc. This will be547

discussed more later.548

In comparison with Exp-ICcQ0NXBT (panels c in Figs. 9 and 10), Exp-ICcQtNXBT (panels549

d in Figs. 9 and 10) has a similar error distribution for the 2-decade heat content time550

tendency. The similarity of panels c and d in Figs. 9 and 10 suggests that, again, the radiative551

forcings play little role in detecting the multi-decadal heat content variability. However, Exp-552

ICcQtNXBT has a colder tendency over the Labrador Sea and a warmer tendency over the553

Greenland Sea than Exp-ICcQ0NXBT does. Use of the ‘perfect’ radiative forcings causing the554

extra errors on decadal heat content tendency over Labrador Sea and Greenland Sea implies555

that the heat transport associated with sea-ice processes is very sensitive to a subtle change556

in model integration environment like the atmospheric radiative forcings. To understand557

the mechanism of extra errors produced by temporally-varying radiative forcings requires558

further studies, especially for the response of sea-ice to radiative effects in the atmosphere.559

This topic lies beyond the scope of this study and shall be addressed in follow-up studies.560

4.2 Impact of oceanic initial conditions561

In Figs. 7 and 8, dashed-blue lines represent the oceanic heat content variations produced562

by Exp-ICfQtNXBT in individual ocean basins and the world ocean. Note that the only563

difference between Exp-ICcQtNXBT (solid-red lines) and Exp-ICfQtNXBT (dashed-blue lines)564

is the initial conditions from which the assimilation model is initialized (the former is ICc and565

the latter is ICf ). The solid-green is the control model simulation (without data constraint)566

starting from ICf and using the same (temporally-varying) radiative forcings (Qt) as in Exp-567

ICcQtNXBT and Exp-ICfQtNXBT , CTL-ICfQt. Except for the South Indian Ocean, in all568

other ocean basins and the world ocean the control model simulation starting from ICf and569
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using Qt is much warmer than the control run starting from ICc and using Q0 (Ctl-ICcQ0,570

dashed-green). Also for most of basins and the world ocean, the “truth” (black lines) lies571

between Ctl-ICcQ0 and Ctl-ICfQt (solid- and dashed-green lines) and therefore for most of572

basins the Ctl-ICcQ0’s mean error is negative while the Ctl-ICfQt’s mean error is positive573

(also see columns 2 and 3 in Tables 1 and 2). The warmer/colder bias in ICf/ICc leads574

to the Exp-ICfQtNXBT /Exp-ICcQtNXBT assimilation approaches the truth from either side575

and eventually produces a warmer/colder assimilation bias (compare dashed-blue lines to576

solid-red lines in Fig. 7 and 8 and mean errors in columns 5 and 6 in Tables 1 and 2). After577

the spinup of a few years, with their own small scale features, both assimilations capture578

the interannual variability and decadal trend of oceanic heat content in basins and the579

world ocean. Although from the time series in Figs. 7 and 8 it’s difficult to distinguish the580

difference of assimilation skills of Exp-ICcQtNXBT and Exp-ICfQtNXBT , the quantitative581

error stististics (compare column 6 to column 5 in Table 1 and 2) show that the use of ICf582

improves dramatically the assimilation quality. The RMS’s reduction from Exp-ICcQtNXBT583

to Exp-ICfQtNXBT is around 15-20% in the Atlantic and Pacific Oceans and around 40% in584

the Indian Ocean while the world ocean gains about 25% RMS error reduction. The biggest585

improvement is found in the North Indian Ocean – the RMS’s reduction over top 2000 m586

from Exp-ICcQtNXBT to Exp-ICfQtNXBT exceeds 50%.587

The dashed-/solid-green lines in Figs. 7 and 8 show that by a centennial time scale, the588

fixed-year/temporally-varying GHGNA radiative effects can drive out a cold/warm ocean589

state. Generally, ICc and ICf produce different initial shocks for assimilation so as to impact590

on assimilation skills. Since the coupled model states have already been forced by historical591

GHGNA records for a long time, the latter is expected to produce smaller initial shocks in592

Exp-ICfQtNXBT than the former in Exp-ICcQtNXBT . Particulary, given the fact that too593

few observations are available in deep ocean (only some CTD profiles can go deeper than594

2000 m), the difference of deep ocean states in ICc and ICf have serious impact on ODA595

initial shocks. Furthermore, due to the nature of low-frequency of deep ocean circulations596

(Fig. 3) the assimilation shocks caused by different deep ocean states in ICc and ICf shall597
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produce quite different assimilation quality in a few decade period. This generally explains598

why the assimilation quality has a big jump from Exp-ICcQtNXBT (columns 5 in Table 1599

and 2) to Exp-ICfQtNXBT (columns 6 in Table 1 and 2) and the improvement for top 2000600

m is greater than the improvement for top 700 m.601

In addition, in the coupled system with ODA only (no data constraint in atmosphere),602

besides oceanic initial conditions, depending on different basins the sufficiently-forced atmo-603

spheric initial conditions by Qt also have impact on ODA assimilation skills. In this view,604

the difference of the performance of Exp-ICcQtNXBT and Exp-ICfQtNXBT over the North605

Indian Ocean is quite interesting. From the analyses and discussions in the previous section,606

we know that the equilibrium state in ODA is balanced by the three torques exerted by607

data, dynamical and external forcing constraints. As mentioned before, being confined by608

continents the North Indian Ocean lacks large scale interior circulations like the subtropical609

Pacific and Atlantic gyres. Instead, the variability of its circulations is mainly driven by the610

Indian monsoon system and influenced by the adjacent/marginal seas through heat and salt611

exchanges. Due to the weak dynamical constraint, the ODA equilibrium in the North Indian612

Ocean, unlike that of other ocean basins, is mainly determined by the data and external613

forcing constraints. Due to sparse observation coverage in the Indian Ocean (see Fig. 5 and614

Fig. 4 in Zhang et al. 2007), the ODA-generated SST constraint for the atmosphere is limited615

in this region and therefore the atmospheric flows in Exp-ICcQtNXBT and Exp-ICfQtNXBT616

basically sustain their own variability. Comparing the surface forcings in Exp-ICcQtNXBT617

and Exp-ICfQtNXBT , it is found that the τx, τy errors of Exp-ICcQtNXBT are significantly618

greater than ones of Exp-ICfQtNXBT . Because of better data coverage in the upper ocean619

relative to deeper, the difference between Exp-ICcQtNXBT and Exp-ICfQtNXBT assimilation620

skills in top 700 m is smaller than in top 2000 m. Again the combination of larger exter-621

nal forcing errors, sparse oceanic observations and weak dynamical constraints leads to a622

quite low Exp-ICcQtNXBT assimilation skill in the North Indian Ocean while once the sur-623

face forcings in this region are improved in Exp-ICfQtNXBT its assimilation skill is greatly624

improved.625
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The big difference of the 2-decade time tendency of heat content in Exp-ICcQtNXBT and626

Exp-ICfQtNXBT (comparing panel e to panel d in Figs. 9 and 10) occurs at the South-627

ern Ocean and the North Atlantic, especially in their deep oceans. Basically over the628

Southern Ocean Exp-ICfQtNXBT has a weaker warm trend while Exp-ICcQtNXBT has a629

stronger warm trend. This can be explained by the warmer/colder initial states from which630

Exp-ICfQtNXBT /Exp-ICcQtNXBT starts (see the solid-/dashed-green lines in Fig. 8). In631

the Southern Ocean, the dynamical constraint in ODA brings the heat content to gradu-632

ally approach the truth from the either side so Exp-ICfQtNXBT /Exp-ICcQtNXBT sustains633

a weaker/stronger warm trend. The difference of time tendency error reduction over the634

Labrador Sea and Greenland Sea between Exp-ICcQtNXBT and Exp-ICfQtNXBT means that635

at the far North Atlantic, the decadal heat content variations especially in deep ocean are636

sensitive to the initial conditions too. Again, due to the existence of deep convections at the637

North Atlantic MOC which is related to the heat and salt transport from ice-water inter-638

actions and other complex processes, the mechanism over the North Atlantic Ocean needs639

more research work for further understanding.640

The analyses above tell us that a long time model spinup by temporally-varying GHGNA641

radiative forcings reduces initial assimilation shocks, especially in deep ocean. The forced642

ICs by the historical GHGNA records render smaller ODA initial shocks and help increase643

the effect of data constraints, and the use of the forced ICs therefore produces better assim-644

ilation skills. Given that both the 20th- and 21st-century OONs do not provide significant645

observations below 2000 m, the analyses above also suggests that when we make numeri-646

cal climate prediction, a long time spinup assimilation for forecast initialization might be647

necessary.648

4.3 Impact of 20th/21st-century OON (NXBT/NARGO)649

The 21st-century OON, NARGO (ARGO network), has two substantial differences from the650

20th-century OON: 1) Unlike NXBT , NARGO has almost same amount of salinity profiles651
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as temperature’s (see the upperleft and the lowerleft of Fig. 6) and 2) ARGO floats are652

initially deployed on a 3ox3o mesh system globally down to 2000 m. The ARGO deploy653

provides a much more uniformly distributed network both horizontally and vertically than654

the 20th-century OON.655

Replacing NXBT by NARGO as shown in Fig. 6, Exp-ICfQtNXBT ODA experiment is656

re-run as Exp-ICfQtNARGO (solid-blue lines in Fig. 7 and 8, column 7 in Tables 1 and 2).657

From Exp-ICfQtNXBT (dashed-blue lines in Figs. 7 and 8, column 6 in Tables 1 and 2) to658

Exp-ICfQtNARGO, the systematic improvement on assimilation skills of oceanic heat content659

appears in the whole upper 2000 m in which the world ocean’s RMS reduction is around660

20%. For top 700 m, the improvement is found, from most to least, in the Southern Ocean661

(error reduction by 36%), the Indian Ocean (23%) and the Arctic Ocean (14%) while for662

the Atlantic and Pacific Oceans, the assimilation skills drop. These phenomena can be663

explained by the data coverage of ARGO network, since as pointed out by AchutaRao et664

al. (2006), the sampling coverage has a large impact on the inferred temperature variability.665

Relative to NXBT , NARGO improves mainly the coverage of temperature samples at high666

latitudes (especially for the Southern Hemisphere) and deep ocean. For the top (say, top667

500 m) Pacific and Atlantic Oceans (especially for the North Pacific and the North Atlantic)668

the NXBT (Fig. 4 of Zhang et al. 2007) is better than the NARGO (Fig. 6). Substantial669

improvements on the assimilation quality of oceanic heat content occur mainly over the670

Indian Ocean, the Southern Ocean and the Arctic Ocean, especially in deep oceans, where671

the data coverage of the 20th-century OON is the sparsest. Among these oceans, the greatest672

enhancement of the assimilation skill is in the North Indian Ocean where the RMS error in673

top 2000 m is reduced by 30% and the mean error is reduced over 90%. Consequently, the674

world ocean’s RMS and mean errors of top 2000 m are reduced by 20% and 60% respectively.675

And also, the improvement of the assimilation quality of oceanic heat content from Exp-676

ICfQtNXBT to Exp-ICfQtNARGO is partly due to the indirect data constraint from the salin-677

ity observations through T-S covariances. In this case the T-S relationship is appied in two678

ways: oceanic salinity is adjusted using temperature observations and oceanic temperature679
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is adjusted using salinity observations, while in Exp-ICfQtNXBT only salinity is adjusted680

by temperature observations through T-S covariances. In this way, since better physical681

balances between temperature and salinity are maintained, the assimilation more efficiently682

extract the observational information by model dynamics. When the real 21st-century ob-683

serving system (say, NXBT + NARGO) is used for real oceanic analysis, the adjustment using684

the ARGO salinity would enhance the assimilation quality much more than the case in which685

only more temperature observations is used.686

Due to the substantial increase of data in the Southern Ocean and the Indian Ocean687

in the 21st-century OON, the estimated time tendency for top 700 m and 2000 m heat688

content have been improved over these basins in Exp-ICfQtNARGO from Exp-ICfQtNXBT689

(Compare panel f to panel e in Figs. 9 and 10). Particularly, larger positive temperature690

errors at the entrance of the Labrador Sea in Exp-ICfQtNXBT has been eliminated in Exp-691

ICfQtNARGO. Given the fact that both the 20th-century and 21st-century OONs sample692

a reasonable number of observed temperature profiles over the northwest Atlantic, the im-693

provement at the entrance of the Labrador Sea should be attributed to the direct assimilation694

of salinity observations. The improved thermohaline structure must improve the estimate695

of deep convections associated with the North Atlantic MOC. In addition, probably owing696

to the ARGO float’s drift by the ocean currents, as shown in Fig. 6, the ARGO deploy697

contains relatively sparse observations (both temperature and salinity) over the eastern part698

of the North Atlantic subtropical gyre. This also creates errors for the heat content time699

tendency in Exp-ICfQtNARGO. The sensitivity of the estimated heat content time tendency700

to the density of observations over the eastern North Atlantic region is related to the strong701

temperature gradient across the North Atlantic subtropical gyre (e.g. see panel b of Fig. 9).702

The assmilation skills on oceanic heat content analyzed in this section are consistent703

with the diagnoses on heat uptake. About the impact of ODA on oceanic heat uptake in the704

coupled model framework will be discussed in details in a separate study.705
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5 Variability of oceanic salinity706

Given that the 20th-century OON provides temperature observations only, this section seeks707

answers for the questions: Based on the 20th-century temperature OON, how much can a708

coupled ensemble filter rebuild the salinity variations by utilizing T-S covariances? With709

the 21st-century temperature and salinity observing network (ARGO), how well can the710

coupled ensemble filter reconstruct the interannual variability and decadal trend of oceanic711

salinity? Comparing to the case assimilating salinity observations, what do we miss if only712

T-S covariances are used?713

5.1 T-S relationship only714

Time series of salinity anomalies from 2 control model runs (Ctl-ICcQ0 and Ctl-ICfQt,715

dashed-/solid-green lines) and 4 assimilation experiments (Exp-ICcQ0NXBT , Exp-ICcQfNXBT ,716

Exp-ICfQtNXBT and Exp-ICfQtNARGO, i.e. dashed-red, solid-red, dashed-blue and solid-717

blue lines) for top 700 m and top 2000 m over individual ocean basins and the world ocean718

are presented in Figs. 11 and 12. As in Figs. 7 and 8, time series of the “true” salinity anoma-719

lies are plotted as black lines here too. From Figs. 11 and 12, we find that the integration720

environment of the assimilation model such as external (GHGNA radiative) forcings, and721

especially the initial conditions, have much more impact on the salinity assimilation than722

the temperature assimilation (comparing the difference between solid- and dashed-red lines723

in Figs. 11 and 12 to the corresponding difference in Figs. 7 and 8). This phenomenon is724

also reflected in the difference of mean errors between Exp-ICcQ0NXBT and Exp-ICcQfNXBT725

(compare the difference of mean errors in columns 4, 5 in Tables 3 and 4 to corresponding726

difference in Tables 1 and 2). From Figs. 7 and 8, it is observed that, for most of basins, the727

assimilations of Exp-ICcQ0NXBT and Exp-ICcQfNXBT (using T-S covariances and starting728

from ICc) only make significant convergence of salinity anomalies of upper ocean.729

RMS error statistics (columns 4 and 5 in Tables 3 and 4) show that except for the Indian730

Ocean, both assimilations reduce the salinity RMS errors from the free model run. The731
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amptitude of the error reduction of top 700 m (46% for the Pacific and 23% for the world732

ocean, for instance) is much more than top 2000 m (17% the Pacific and negative for the733

world ocean). There is almost no difference of RMS error statistics of the assimilation salinity734

between Exp-ICcQ0NXBT and Exp-ICcQfNXBT except for the Arctic Ocean where the former735

is larger than the latter (compare column 5 to column 4 in Table 3 and 4). Combining with736

RMS error statistics the difference of mean errors between these two assimilations does not737

mean a meaningful improvement on salinity assimilation skill.738

In this coupled system, the salinity adjustment in Exp-ICcQ0NXBT and Exp-ICcQfNXBT739

comes from two parts. One is the direct projection from oceanic temperature observations740

by T-S covariances, and the other is the response of the coupling mechanism to the ODA-741

generated SSTs. For example, when the atmosphere is driven by the ODA-generated SSTs,742

as a return, the precipitation and the surface wind stress provided by the atmosphere alter743

the salinity distribution in the top layer of ocean. Eventually, the adjustment of the top744

ocean salinity is a combination of the above two factors while the changes of the salinity745

in deep ocean mainly rely on the response of oceanic circulations to the adjustment of the746

upper ocean. Since the Ctl-ICcQ0 stays colder and saltier than the “truth,” assimilations of747

Exp-ICcQ0NXBT and Exp-ICcQtNXBT tend to make the water fresher and warmer in most of748

basins and the world ocean. Generally, in the tropics the T-S relationship is able to retrieve749

the variations of top ocean salinity anomalies to some degree due to the linkage between750

convective precipitation (associated with warm SSTs) and fresher water near surface and a751

good T-S relationship associated with the isopycnal nature of thermocline oscillations (Zhang752

et al. 2007). A tropical Pacific example (5oS-5oN, top 200 m) is shown in Fig. 13 where the753

salinity anomalies in all 4 assimilations follow the “true” variability, in which the salinity754

anomaly of Exp-ICfQtNXBT exhibits the smallest error.755

In the extratropics and deep oceans, the main role of the T-S covariance-based salinity756

assimilation from temperature observations is to sustain the dynamical balance. The use757

of T-S covariances is not sufficient to constrain the salinity anomaly to follow the truth.758

For example, the salinity assimilation in Exp-ICcQ0NXBT and Exp-ICcQfNXBT produces a759
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negative salinity time tendency (oceans continue to freshen) in top 2000 m of most basins760

and the world ocean (panels c and d in Fig. 14).761

A noticeable phenomenon in Exp-ICcQ0NXBT and Exp-ICcQtNXBT is that negative762

anomalies of the world ocean salinity overshoot the truth, especially for top 2000 m (see763

the WORLD OCEAN panel of Fig. 12). i.e., the ocean in these assimilations is too fresh.764

The Southern Ocean is the main contributor to this overshooting. Here we can use the lines765

of temperature and salinity anomalies in Ctl-ICcQ0 and Ctl-ICfQt (dashed- and solid-green766

lines in Figs. 7, 8, 11 and 12) to estimate how the assimilation model responds to upper767

ocean temperature observations to form the top 2000 m salinity anomalies. In top 700 m768

of the Southern Ocean, the Ctl-ICcQ0 water is colder and fresher than the Ctl-ICfQt water769

(see dashed-/solid-green lines in Figs. 7 and 11), while in top 2000 m, the Ctl-ICcQ0 wa-770

ter is colder and saltier than the Ctl-ICfQt water (see dashed-/solid-green lines in Figs. 8771

and 12). This implies a negative correlation of the top 2000 m salinity and the upper ocean772

temperature observations. It is saying that the assimilation model responds to the warming773

of the top ocean of the Southern Ocean by making the water fresher. During the last 10774

years of the assimilation, the averaged T-S covariance in Exp-ICcQ0NXBT (estimated by the775

Southern Ocean domain-averaged temperature and salinity of top 2000 m) is -5×10−5 PSU776

oC. Given a warming of 0.25oC and a temperature standard deviation of 0.087oC, regression777

produces a freshening of -1.5×10−4 PSU, The freshening rate is seriously underestimated778

by the domain-averaging effect, but it does indicate a freshening trend. Understanding the779

mechanism of the Southern Ocean’s freshening trend induced by a warming trend of upper780

ocean requires further research work on the Southern Ocean’s circulations (the Antarctic781

circumpolar circulation, for instance).782

Consistent with the analyses for oceanic heat content in section 4.1, the analyses above783

for oceanic salinity assimialtion quality further show that the temporally-varying GHGNA784

radiative forcings do not have much impact on assimilation quality. Understanding why the785

use of Qt makes the assimilation of the Arctic Ocean worse requires further research work786

too.787
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5.2 Using ICf788

The salinity assimilation errors of Exp-ICfQtNXBT (columns 6 in Tables 3 and 4) are much789

smaller than the errors of Exp-ICcQ0NXBT and Exp-ICcQtNXBT (also see dashed-blue lines in790

Figs. 11 and 12). The biggest improvement is in the Indian Ocean where the error reduction791

from Exp-ICcQtNXBT to Exp-ICfQtNXBT is around 40% for top 700 m and 50% for top792

2000 m. The deep ocean improvement is greater than the upper (for the world ocean, 30%793

error reduction in top 700 m and 43% in top 2000 m, for instance). And also, compared to794

the heat content assimilation improvement (columns 6 in Tables 1 and 2, 23%/27% error795

reduction for the world ocean top 700 m/top 2000 m, for instance), the salinity assimilation796

improvement by using ICf is more dramatically (columns 6 in Tables 3 and 4, 30%/43% error797

reduction for the world ocean’s top 700 m/top 2000 m). In addition, comparing the errors798

of the 2-decade salinity time tendency in Exp-ICcQ0NXBT and Exp-ICcQtNXBT (panels c799

and d in Fig. 14) to the salinity tendency errors of Exp-ICfQtNXBT (panel e) it is found800

that the latter reduces the salinity time tendency errors from the corresponding free model801

run (Ctl-ICfQt, panel b) more greatly than the former two do from Ctl-ICcQ0 (not shown802

here). We also can see that the salinity time tendency errors of Exp-ICfQtNXBT are much803

less than ones of Exp-ICcQ0NXBT and Exp-ICcQtNXBT .804

The analyses of heat content assimilation in section 4 have shown that due to the low-805

frequency nature of oceanic circulations the initial shocks have serious impact on oceanic806

assimilation skill. Since the T-S relationship derived from model is a weak constraint for807

salinity, when only T-S covariances are used to transform temperature observational incre-808

ments to salinity adjustments, the salinity assimilation quality relies on the initial conditions809

more strongly than the temperature assisilation does. Thus, in this circumstance, the use810

of favorite initial conditions, e.g., that have the knowledge of long time temporally-varying811

radiative forcings, is very important to restrict the salinity assimilation errors to a relatively812

small range.813
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5.3 Assimilating salinity observations814

When the direct salinity observations in the 21st-century OON are used, the salinity assimi-815

lation errors in Exp-ICfQtNARGO (solid-blue lines in Figs. 11 and 12, columns 7 in Tables 3816

and 4) are much smaller than in other cases. (Larger RMS errors of the North Atlantic Ocean817

salinity in Exp-ICfQtNARGO than other cases may be associated with the detailed structure818

of meridional overturning circulations which will be discussed more in next section.) For819

most of basins and the world ocean, the salinity anomalies of top 700 m in Exp-ICfQtNARGO820

capture the “true” variations very well after the spinup of a few years. Although the deep821

ocean spinup takes much longer, the assimilation tends to reconstruct the “true” salinity822

variability up to a depth of 2000 m eventually. However, a noticeable departure between the823

salinity anomaly of Exp-ICfQtNARGO and the truth still can be found in the South/North824

Indian and Arctic Oceans. Also it is noticed that after 20 years the Arctic Ocean’s ODA825

salinity anomaly begins to follow the “truth”. This slow convergence in the Arctic Ocean826

may be explained by the response of the Arctic Ocean to the assimilation constraints im-827

posed in the neighboring oceans by direct salinity observations as well as to the forcings from828

other coupled model components such as the atmosphere, sea-ice and land. Relatively large829

salinity assimilation errors in the North Indian Ocean, again, can be related to its sensitive830

response to variations of the Indian monsoon and to the influence of the salt budget of the831

through flows which connect the Indian Ocean to the Pacific Ocean, and local river runoff.832

Oceanic assimilation results constrained by both oceanic temperature and salinity obser-833

vations can be viewed as equilibrium oceanic states in which oceanic data constraints are834

balanced by external forcings such as the atmospheric wind stress, heat/water fluxes. By835

improving surface forcings of ocean, a new coupled data assimilation experiment including836

both atmospheric and oceanic data assimilation components has improved the estimate of837

oceanic states. This is especially true for such oceans as the Indian and North Atlantic where838

oceanic circulations have a more sensitive response to the atmospheric forcings. A complete839

examination of the impact of atmospheric data constraint on the estimation of oceanic states840
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will be presented in separate studies.841

6 The thermohaline structure of the North Atlantic842

Ocean843

The North Atlantic (NA) meridional overturning circulation (MOC) has been recognized as844

one of the most important oceanic circulations that have important impact on the global845

climate. The detection of the NA thermohaline structure by an oceanic observing system846

could serve as the first step for the NA MOC estimation using observed data (including847

oceanic and atmospheric measurements) and models. Also initialization using the estimated848

oceanic state might be beneficial for the NA MOC’s prediction. This section examines the849

ability of the ODA component in the GFDL’s CDA system to detect the NA thermohaline850

structure, by analysing the quality of the assimilated oceanic temperature and salinity from 4851

ODA experiments. We focus on the upper (200-1000m) and lower (1000-5000m) portions of852

the North (20o-70oN) Atlantic Ocean, which corresponds to the polarward and equatorward853

heat and salt transport of the NA MOC.854

First let us check the convergence of the assimilated oceanic temperature and salinity855

obtained from these ODA experiments within the NA MOC domain. Figure 15 presents856

the time series of RMS errors of the assimilated temperature and salinity in the upper 2000857

m NA MOC domain for Exp-ICcQ0NXBT (dashed-red), Exp-ICcQtNXBT (solid-red), Exp-858

ICfQtNXBT (dashed-blue) and Exp-ICfQtNARGO (solid-blue). The two control model runs859

(Ctl-ICcQ0/Ctl-ICfQt) are also plotted in the dashed-/solid-green lines as the reference.860

Figure 15 shows that compared to the controls, the assimilation errors of both temperature861

and salinity in all 4 experiments are substantially reduced during the first 15 years (Compare862

the dahed- and solid-red lines to the dashed green line, and the dashed- and solid-blue lines to863

the solid-green line). In contrast, only Exp-ICfQtNARGO shows a stable convergence during864

the last 10 years. Further diagnoses reveal that the deep convection associated with the NA865

MOC encounters a regime shift from an inactive phase to an active phase during the last866
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10 years. (The estimation and initialization of the NA MOC will be completely analyzed867

and discussed in a separate follow-up study). On the positive side, due to the existence of868

the subpolar gyre, the T-S relationship could play an important role in salinity adjustments,869

which could help somewhat to reconstruct the NA MOC structure. This conveys some hope870

for estimating the NA MOC using the 20th-century OON, as evidenced by the time series of871

the assimilated NA temperature and salinity in the upper portion (200-1000m) (panels a and872

b in Fig. 16). Panels a and b of Fig. 16 show that based on the 20th-century OON, to some873

degree, the assimilation is able to rebuild the polarward branch of the NA MOC. However,874

all 3 assimilation experiments using the 20th-century OON show a sharp increase of both875

temperature and salinity assimilation errors during the last 10 years (Fig. 15). Corresponding876

jumps are found in the NA temperature and salinity time series in the lower portion (1000-877

5000m) of the NA MOC (panels c and d in Fig. 16). This means that the 20th-century OON878

fails to provide sufficient data to resolve the transition from an inactive deep convective879

regime to an active deep convective regime. It is saying that there is a negative side for880

the assimilation quality of the North Atlantic Ocean due to the existence of the NA MOC881

since both its structure and mechanism are so complicated that only using T-S relationship882

is insufficient to resolve its variability. From Fig. 16, it is observed that even in the Exp-883

ICfQtNARGO case (solid-blue line), although sharing a multi-decadal trend with the truth,884

the deep ocean salinity remains a departure from the truth.885

Reconstructing the NA overturning structure with high accuracy is essential for esti-886

mating the variation of the NA MOC. This is a complex and challenging task since it is887

associated with multiple factors such as large-scale heat and salt transport by thermohaline888

circulations, sea-surface forcings from atmosphere, fresh water forcing from ice and runoff889

as well as their interaction with the local topographic features. Given the strong linkage890

between the atmospheric North Atlantic oscillation (NAO) and the NA MOC (Delworth891

and Greatbatch 2000; Delworth and Dixon 2000), the ODA process in the experiments of892

the present study are in conflict with the sea-surface forcings from the unconstrained atmo-893

sphere. The preliminary results from CDA experiments (belongs to the next phase of this894
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project), which adds an atmospheric data constraint in, show a considerable improvement895

on the estimate of the NA MOC structure.896

7 Conclusions and discussions897

This study is the second part of a global oceanic climate study project utilizing the GFDL898

coupled ensemble data assimilation (CDA) system (Zhang et al. 2007), with a aim at ad-899

dressing the detection of oceanic variability. As an implementation of stochastic estimation900

theory, the CDA system solves for a temporally-varying joint probability density function901

(joint-PDF) of climate state variables by combining the observational PDF and a prior PDF902

derived from the dynamically-coupled model. The solved joint-PDF, which is represented903

discretely by a set of ensemble members, is a complete solution of the coupled data assimila-904

tion problem. The ensemble mean is the state estimate and higher-order moments measure905

the uncertainty of the estimate. In this process, observational information – samples of the906

“truth” – are projected onto the coupling dynamics to form the estimate of climate states.907

The accuracy of the estimates is influenced not only by the assimilation methodology, but908

also by the assimilation model’s bias as well as the representativeness of observing network.909

Based on the methodology described above, this study has examined the detectability of910

long time scale variability of oceanic heat content and salinity by the 20th-century (tempera-911

ture only) and the improved 21st-century (both temperature and salinity) oceanic observing912

system. For this purpose, a perfect model assimilation framework, or called perfect “twin”913

assimilation experiment, was designed. This is a special type of observing system simu-914

lation experiments (OSSEs) based on a real oceanic observing network. In these OSSEs915

a model simulation with the historical greenhouse gas and natural aerosol (GHGNA) ra-916

diative forcings is set as the target (or called the “truth”) of assimilation. The model917

simulation is also used to produce the “observed” data an oceanic observing network to918

be examined. Given this perfect model study methodology, the influence of model bias is919

excluded from this study. The “true” oceanic temperature on which a white noise is added920
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is sampled by the 20th-century ocean observing network to form 20th-century ocean “ob-921

servations”; and the same method is applied to both temperature and salinity to form the922

21st-century ocean observations based on the ARGO network. Within the CDA framework,923

these oceanic model observations are assimilated into the coupled climate model for target-924

ing a 25-year climate variation corresponding to the 1976-2000 historical GHGNA records.925

These ODA experiments start from different initial conditions (ICs) and use different (i.e.926

fixed-year or temporally-varying) GHGNA radiative forcings. Two sets of ICs, i.e. the con-927

trolled/forced, corresponding to the coupled model states after a long time model spinup by928

fixed-year/temporally-varying GHGNA radiative forcings, are used in this study.929

A series of oceanic data assimilation (ODA) experiments within the coupled model frame-930

work is designed to examine the impact of fixed-year/temporally-varying radiative forcings,931

the controlled/forced ICs and the 20th-/21st-century oceanic observing network upon detec-932

tion of climate variability. Results established the following findings:933

1. Within the 25-year assimilation period, the adjustment of oceanic states is dominated934

by the data constraint imposed by the assimilated observations while explicit knowledge of935

temporally-varying GHGNA radiative forcings added to model integration does not produce936

a significant impact on the assimilation skill. This should not be surprising since the “obser-937

vations” already implicitly contain the information of temporally-varying radiative forcings.938

2. The initial conditions extracted from the GFDL IPCC historical simulation with939

temporally-varying GHGNA radiative forcings reduce initial assimilation shocks, especially940

in deep oceans. The small initial assimilation shocks from the forced ICs help increase the941

effects of data constraint and the forced ICs produce therefore a better assimilation skill942

than the controlled ICs. Given that both the 20th- and 21st-century in situ measurements943

do not provide observations below 2000 m (except for some deeper high resolution CTD944

profiles), when numerical climate predictions are made, a long time assimilation spinup for945

initialization may be necessary.946

3. Comparing the assimilation using the 20th-century XBT observing network to the947
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assimilation using the 21st-century ARGO observing network, we found that both oceanic948

observing networks provide adequate samples to capture the decadal/multi-decadal trend949

and interannual variability of heat content. However, due to the isopycnal nature of oceanic950

circulations and fresh water forcings at high latitudes, the salinity observations provided by951

the ARGO network give significant information for reconstructing the thermohaline structure952

of oceanic states with a high accuracy, and they are therefore very important for global953

oceanic climate studies. In particular, the salinity observations play a critically-important954

role for correctly estimating deep convections at the North Atlantic meridional overturning955

circulation.956

4. In tropical oceans, the coupling mechanism produces a strong T-S correlation (e.g.957

the convective precipitation induced by a warmer SST freshens the surface-near ocean).958

Therefore the use of T-S covariances in the filter is able to capture the basic features of959

salinity variability based on in situ temperature measurements only. This conveys a hope960

that, when we use the real data (temperature only) to estimate the 20th-century climate961

states, the use of T-S covariances may retrieve some basic features of salinity variability.962

As the first step of efforts for estimation of the multi-decadal variability of historical963

climate variations and its forecast initialization, this study uses the perfect model (identical964

twin experiment) framework; although this study successfully demonstrated the creditability965

of the CDA system to detect both the decadal/multi-decadal trend and the interannual966

variability of oceanic heat content and salinity, we recognized the obtained results may be967

overly optimistic. The ODA-generated variability resulting from data constraints contains968

both what data sample and an artifact of data sparseness (see the NORTH INDIAN OCEAN969

panel in Fig. 8, for instance). The latter may become severe in the presence of model bias.970

As we apply the ODA approach to the real observations, the model bias issue can be a big971

challenge. It is difficult to even identify what part of the ODA-generated variability is an972

artifact of sampling.973

In follow-up studies, on one hand, an imperfect “twin” experiment including two cou-974
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pled GCMs that are biased each other are designed to well define the ODA’s “bias” issue975

brought by model bias, and the imperfect twin assimilation framework also is used to seek976

the solution of the problem. On the other hand, we realized that, under the coupled model977

system framework, the oceanic states at the ODA’s equilibrium represent the balance of978

three torques exerted by data constraint, dynamical constraint and external forcing con-979

straint. In this study, external forcings from other components of the coupled model (e.g.980

the wind stress from atmosphere, which is a leading-order term of external forcings) remain981

as free modes responding to the ODA-generated sea-surface conditions. This can restrict982

the efficacy of the ODA’s data constraint. Results of CDA experiments which include both983

oceanic and atmospheric data constraints will be reported by follow-up studies, but they984

do show that the estimate of oceanic states in individual ocean basins and the world ocean985

is improved considerably due to the improved ocean external forcings. The correction of986

external forcings produced by the atmospheric data constraint in a fully-coupled assimi-987

lation framework is expected to relax the oceanic model bias and therefore improve the988

estimate of historical oceanic states using real observed data. Initial estimates of coupled989

oceanic/atmospheric/sea-ice/land states from 1980-2006 have been done using 24 ensemble990

members to assimilate real observed oceanic data and the atmospheric NCEP/NCAR reanal-991

ysis data. Preliminary results from a set of retrospective one year ENSO (El Nino-Southern992

Oscillation) forecasts show a significantly improved skill over our 3D-Var assimilation sys-993

tem. Refined versions of the CDA system which for example take model bias correction into994

account are expected to further improve the estimates of the coupled states and enhance995

the accuracy of numerical climate predictions. In order to widen the prior PDF and reduce996

model biases, a multi-model ensemble assimilation system which brings the GFDL’s B-grid997

(CM2.0) and finite-volume (CM2.1) coupled models together to produce error statistics for998

filtering process is under tests.999

In addition, this study uses in situ oceanic measurments only. As an important part1000

of the 21st-century oceanic observing system, the satellite altimeter data contain integrated1001

information of the vertical thermohaline structure and the use of altimeter data is also1002
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expected to help relax the model bias problem. How to use altimeter data to build the1003

vertical structure of oceanic circulations shall be an important aspect that will be explored1004

in next efforts.1005
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TABLE CAPTIONS1092

Table. 1 The time mean RMS of oceanic temperature errors (oC) over top 700 m during the1093

last 20 years in 2 control and 4 assimilation experiments/the RMS’s reduction (%) of1094

assimilation from the case it is compared to (for Exp-ICcQ0NXBT the RMS’s reduction1095

is from Ctl-ICcQ0; for Exp-ICcQtNXBT the reduction is from Exp-ICcQ0NXBT ; for Exp-1096

ICfQtNXBT the reduction is from Exp-ICcQtNXBT ; for Exp-ICfQtNARGO the reduction1097

is from Exp-ICfQtNXBT ), the mean errors (10−2 oC) of 4 assimilation and 2 model1098

simulation experiments are listed in parentheses1099

Table. 2 Same as Table 1 but for top 2000 m1100

Table. 3 The time mean RMS of oceanic salinity errors (PSU) over top 700 m during the1101

last 20 years in 2 control and 4 assimilation experiments/the RMS’s reduction (%) of1102

assimilation from the case it is compared to (for Exp-ICcQ0NXBT the RMS’s reduction1103

is from Ctl-ICcQ0; for Exp-ICcQtNXBT the reduction is from Exp-ICcQ0NXBT ; for Exp-1104

ICfQtNXBT the reduction is from Exp-ICcQtNXBT ; for Exp-ICfQtNARGO the reduction1105

is from Exp-ICfQtNXBT ), the mean errors (10−2 PSU) of 4 assimilation and 2 model1106

simulation experiments are listed in parentheses1107

Table. 4 Same as Table 3 but for top 2000 m1108
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FIGURE CAPTIONS1109

Fig. 1 The domain-averaged temperature and salinity over the North Atlantic (20◦N-70◦N)1110

upper (200-1000m) (top, ac) and lower (1000-5000m) (bottom, bd) oceans in T-S space1111

for the control run using the 1860 fixed-year radiative forcings (left, ab) and the 20th
1112

century histotical run using temporally-varying radiative forcings (right, cd). The first1113

40 years are marked by black dots, and each quarter afterward is marked by cyan, blue,1114

green and red dots respectively.1115

Fig. 2 Schematic diagram of how the GFDL coupled model (CM2) components – atmo-1116

sphere, ocean, land and sea-ice interacts each other by exchange fluxes (black arrows).1117

The green arrow denotes the radiative forcings expressed by the atmospheric green-1118

house gas and natural aerosol (GHGNA) in the coupled model system, and the dashed1119

means that the GHGNA radiative forcings in assimilation may be set as fixed-year1120

(1860). The red arrows indicate that oceanic observations are allowed to impact all1121

oceanic state variables including the wind stresses at the sea-surface.1122

Fig. 3 The ensemble spread of the atmosphere (upper) and the ocean (lower) in CM2.1123

Each colored line represents the individual ensemble member’s departure from the1124

ensemble mean for time mean temperature. The time mean temperature is computed1125

as the last 10-year time-averaged global mean of a 25-year model ensemble integration1126

initialized from 6 yearly-departed atmospheric states (including land) combing with a1127

common oceanic state (including sea-ice). The model integration uses the 1860 fixed-1128

year GHGNA radiative forcings. The dashed-black lines are the standard deviation of1129

the atmospheric/oceanic temperature, computed by the 6-member ensemble.1130

Fig. 4 Cartoon of how an ensemble filter updates the distribution for a scalar variable.1131

The upperleft reprsents the prior distribution derived from model ensemble integra-1132

tions starting from the previous assimilation results. The upperright represents an1133

observational distribution (usually Gaussian). An ensemble filtering process (lower-1134

left) combines the observational and prior distributions to form an updated ‘analyzed‘1135
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distribution (lowerright) realized by the ensemble member states that initialize next1136

ensemble integrations.1137

Fig. 5 Samples of vertical variations of the 20th-century oceanic observing network. Up-1138

per/lower panels are the locations of observational profiles deeper than 500m/1000m1139

in January 1986 (left) and 1991 (right). The background colors show the individual1140

ocean basins that are examined in this study.1141

Fig. 6 Samples of vertical variations of the 21st-century oceanic observing network (ARGO).1142

Upper/lower panels are the locations of ARGO temperature (left) and salinity (right)1143

profiles deeper than 500m/1000m in January 2005.1144

Fig. 7 Time series of the averaged oceanic temperature anomalies of top 700 m for indi-1145

vidual ocean basins and the world ocean in the 3 free model simulations and 4 ODA1146

experiments (see section 3). One of free model simulation, the GFDL IPCC histori-1147

cal simulation (plotted by black lines) is sampled by the 20th-century or 21st-century1148

oceanic observing network to form ‘observations’ for ODA, and serves as the target1149

of 4 assimilations: Exp-ICcQ0NXBT (dashed-red), Exp-ICcQtNXBT (solid-red), Exp-1150

ICfQtNXBT (dashed-blue) and Exp-ICfQtNARGO (solid-blue). Other two free model1151

simulations – Ctl-ICcQ0 and Ctl-ICfQt – are plotted by the dashed- and solid-green1152

lines as the reference of assimilation evaluation.1153

Fig. 8 Same as Fig. 7 but for top 2000 m.1154

Fig. 9 Differences of the time means for 1991-2000 and 1981-1990 of the top 700 m ocean1155

temperature of the truth (a), and the assimilation errors of the difference in Exp-1156

ICcQ0NXBT (c), Exp-ICcQtNXBT (d), Exp-ICfQtNXBT (e) and Exp-ICfQtNARGO (f).1157

The errors of a control case, Ctl-ICfQt, also are exhibted in panel b as a reference for1158

assimilation evaluation. The contour interval is 0.1oC, the 0-line is omitted and the1159

dashed is negative.1160

Fig. 10 Same as Fig. 9 but for the top 2000 m ocean and the contour interval is 0.05oC.1161
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Fig. 11 Same as Fig. 7 but for the salinity.1162

Fig. 12 Same as Fig. 8 but for the salinity.1163

Fig. 13 Time series of salinity anomalies averaged at the tropical Pacific (5oS-5oN) of top1164

200 m in the truth (black), 2 control free model runs (dashed-green for Ctl-ICcQ0 and1165

solid-green for Ctl-ICfQt) and 4 ODA experiments: Exp-ICcQ0NXBT (dashed-red),1166

Exp-ICcQtNXBT (solid-red), Exp-ICfQtNXBT (dashed-blue) and Exp-ICfQtNARGO (solid-1167

blue).1168

Fig. 14 Same as Fig. 10 but for the salinity and the contour interval is 0.01 PSU.1169

Fig. 15 Time series of the assimilated oceanic temperature/salinity (upper/lower) RMS1170

errors, computed in the North Atlantic (20o-70oN) of top 2000 m, in Exp-ICcQ0NXBT1171

(dashed-red), Exp-ICcQtNXBT (solid-red), Exp-ICfQtNXBT (dashed-blue) and Exp-1172

ICfQtNARGO (solid-blue). The corresponding RMS time series for 2 control free model1173

runs (dashed-/solid-green for the Ctl-ICcQ0/Ctl-ICfQt) are plotted as the reference of1174

assimilation.1175

Fig. 16 Time series of the averaged oceanic temperature (left) and salinity (right) in the1176

north (20o-70oN) Atlantic over the upper (200-1000m, top panels) and lower (1000-1177

5000m, bottom panels) portions of the North Atlantic meridional overturning circula-1178

tion.1179
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Table 1: The time mean RMS of oceanic temperature errors (oC) over top 700 m during
the last 20 years in 2 control and 4 assimilation experiments/the RMS’s reduction (%)
of assimilation from the case it is compared to (for Exp-ICcQ0NXBT the RMS’s reduction
is from Ctl-ICcQ0; for Exp-ICcQtNXBT the reduction is from Exp-ICcQ0NXBT ; for Exp-
ICfQtNXBT the reduction is from Exp-ICcQtNXBT ; for Exp-ICfQtNARGO the reduction is
from Exp-ICfQtNXBT ), the mean errors (10−2 oC) of 4 assimilation and 2 model simulation
experiments are listed in parentheses

Basin Ctl-ICcQ0 Ctl-ICfQt Exp-ICcQ0NXBT Exp-ICcQtNXBT Exp-ICfQtNXBT Exp-ICfQtNARGO

SAT .62(-41) .60(11) .22/65(.1) .21/5(-.1) .19/10(.2) .19/0(-.03)
NAT .84(-25) 1.0(10) .33/61(-1) .34/-3(-.2) .28/18(.2) .34/-26(-2)
AT .77(-31) .91(10) .30/61(-.6) .30/0(-.2) .25/17(.2) .29/-16(-1)
SIN .66(9) .69(-.6) .38/42(4) .38/0(4) .26/32(.6) .20/30(-.9)
NIN .69(-41) .70(24) .58/16(-2) .60/-3(-2) .38/37(1) .28/33(2)
IN .68(-4) .70(6) .45/34(3) .45/0(2) .30/33(.8) .23/23(-.1)
SPC .55(-10) .64(-4) .17/69(-.4) .16/6(-.6) .15/6(-.3) .19/-26(2)
NPC .90(-8) .86(-2) .22/76(1) .22/0(1) .17/23(.1) .25/-47(2)
PC .78(-9) .78(-3) .21/73(.5) .20/5(.3) .16/20(-.1) .23/-44(2)
SO .53(-33) .64(20) .33/38(-7) .31/6(-6) .28/10(2) .18/36(2)
AO .53(-17) .63(19) .33/38(-4) .38/-15(-3) .29/24(2) .25/14(2)
WO .71(-19) .77(7) .31/56(-2) .31/0(-1) .24/23(.7) .24/0(1)

SAT – South Atlantic Ocean; NAT – North Atlantic Ocean; AT – Atlantic Ocean

SIN – South Indian Ocean; NIN – North Indian Ocean; IN – Indian Ocean

SPC – South Pacific Ocean; SPC – North Pacific Ocean; PC – Pacific Ocean

SO – Southern Ocean; AO – Arctic Ocean; WO – World Ocean



Table 2: Same as Table 1 but for the top 2000 m

Basin Ctl-ICcQ0 Ctl-ICfQt Exp-ICcQ0NXBT Exp-ICcQtNXBT Exp-ICfQtNXBT Exp-ICfQtNARGO

SAT .31(-19) .31(10) .14/55(-.9) .13/7(-1) .11/15(2) .12/-9(-.4)
NAT .49(-11) .58(9) .22/55(-.1) .22/0(.2) .19/14(-.3) .20/-5(.6)
AT .43(-14) .50(9) .19/56(-.4) .20/-5(-.5) .17/15(.5) .17/0(-1)
SIN .35(7) .37(2) .27/23(7) .27/0(7) .17/37(3) .13/24(.2)
NIN .42(-27) .44(26) .53/-26(-18) .55/-4(-17) .27/51(-5) .18/33(-.1)
IN .37(-2) .39(8) .36/3(.3) .37/-3(.4) .20/46(.6) .14/30(.1)
SPC .26(-6) .35(8) .16/39(-1) .13/19(-1) .12/8(3) .10/17(1)
NPC .41(-.3) .41(2) .14/71(2) .14/0(2) .10/29(.3) .12/-20(.5)
PC .36(-3) .39(5) .15/58(.7) .14/7(.3) .11/21(1) .11/0(.7)
SO .35(-24) .43(19) .21/40(-6) .20/5(-6) .18/10(3) .10/44(1)
AO .37(-12) .45(21) .26/30(-2) .28/-8(-4) .24/14(5) .20/17(3)
WO .38(-11) .43(10) .22/42(-2) .22/0(-2) .16/27(2) .13/19(.6)

Table 3: The time mean RMS of oceanic salinity errors (PSU) over top 700 m during
the last 20 years in 2 control and 4 assimilation experiments/the RMS’s reduction (%)
of assimilation from the case it is compared to (for Exp-ICcQ0NXBT the RMS’s reduction
is from Ctl-ICcQ0; for Exp-ICcQtNXBT the reduction is from Exp-ICcQ0NXBT ; for Exp-
ICfQtNXBT the reduction is from Exp-ICcQtNXBT ; for Exp-ICfQtNARGO the reduction is
from Exp-ICfQtNXBT ), the mean errors (10−2 PSU) of 4 assimilation and 2 model simulation
experiments are listed in parentheses

Basin Ctl-ICcQ0 Ctl-ICfQt Exp-ICcQ0NXBT Exp-ICcQtNXBT Exp-ICfQtNXBT Exp-ICf QtNARGO

SAT .10(-1) .15(.2) .08/20(-.4) .08/0(-.1) .06/25(.5) .05/17(-.4)
NAT .14(-1) .24(1) .11/21(-3) .11/0(-2) .08/27(2) .09/-13(-.5)
AT .13(-1) .22(.6) .10/23(-2) .10/0(-1) .07/30(1) .07/0(-.5)
SIN .15(8) .15(2) .14/7(2) .13/7(3) .08/38(3) .05/38(.1)
NIN .19(-8) .22(9) .26/-37(-4) .26/0(-2) .17/35(4) .09/47(2)
IN .17(4) .18(3) .18/-6(.7) .18/0(2) .11/39(3) .06/46(.7)
SPC .10(2) .14(-3) .06/40(.2) .06/0(2) .05/17(-1) .04/20(-.3)
NPC .14(5) .16(-.7) .08/43(4) .08/0(4) .05/38(-.8) .04/20(.05)
PC .13(4) .15(-2) .07/46(2) .07/0(3) .05/29(-1) .04/20(-.1)
SO .08(3) .10(-.8) .07/13(3) .07/0(3) .05/29(1) .03/40(.1)
AO .12(3) .17(-.6) .09/25(4) .12/-33(3) .07/42(2) .06/14(-1)
WO .13(3) .16(-.4) .10/23(1) .10/0(2) .07/30(.5) .05/29(-.1)



Table 4: Same as Table 3 but for the upper 2000 m of the ocean

Basin Ctl-ICcQ0 Ctl-ICfQt Exp-ICcQ0NXBT Exp-ICcQtNXBT Exp-ICfQtNXBT Exp-ICf QtNARGO

SAT .05(-1) .07(.8) .05/0(-1) .05/0(-1) .04/20(-1) .03/25(-.1)
NAT .07(-.5) .12(1) .06/14(-1) .06/0(-1) .04/33(.5) .05/-25(-.05)
AT .07(-.8) .10(1) .06/29(-1) .06/0(-1) .04/33(.7) .07/-75(-.02)
SIN .07(3) .07(.6) .09/-29(1) .08/11(2) .05/38(2) .03/40(.4)
NIN .11(-6) .18(7) .18/-64(-7) .18/0(-6) .09/50(1) .05/44(.8)
IN .09(.7) .09(2) .12/-33(-1) .12/0(-.4) .06/50(2) .04/33(.5)
SPC .05(-.1) .06(-.4) .04/20(-2) .04/0(-.8) .03/25(-.4) .02/33(.1)
NPC .06(2) .07(-1) .05/17(1) .05/0(1) .03/40(-1) .02/33(-.2)
PC .06(1) .07(-1) .05/17(.1) .04/20(.5) .03/25(-.7) .02/33(-.04)
SO .05(-.3) .06(.8) .05/0(-1) .05/0(-1) .03/20(1) .02/33(.1)
AO .06(1) .08(1) .05/17(1) .06/-20(.6) .04/33(.6) .03/25(-1)
WO .06(.3) .08(.3) .07/-17(-.5) .07/0(-.3) .04/43(.3) .03/25(.03)



Figure 1: The domain-averaged temperature and salinity over the North Atlantic (20◦N-
70◦N) upper (200-1000m) (top, ac) and lower (1000-5000m) (bottom, bd) oceans in T-S
space for the control run using the 1860 fixed-year radiative forcings (left, ab) and the 20th

century histotical run using temporally-varying radiative forcings (right, cd). The first 40
years are marked by black dots, and each quarter afterward is marked by cyan, blue, green
and red dots respectively.



Figure 2: Schematic diagram of how the GFDL coupled model (CM2) components – at-
mosphere, ocean, land and sea-ice interacts each other by exchange fluxes (black arrows).
The green arrow denotes the radiative forcings expressed by the atmospheric greenhouse gas
and natural aerosol (GHGNA) in the coupled model system, and the dashed means that the
GHGNA radiative forcings in assimilation may be set as fixed-year (1860). The red arrows
indicate that oceanic observations are allowed to impact all oceanic state variables including
the wind stresses at the sea-surface.



Figure 3: The ensemble spread of the atmosphere (upper) and the ocean (lower) in CM2.
Each colored line represents the individual ensemble member’s departure from the ensem-
ble mean for time mean temperature. The time mean temperature is computed as the
last 10-year time-averaged global mean of a 25-year model ensemble integration initialized
from 6 yearly-departed atmospheric states (including land) combing with a common oceanic
state (including sea-ice). The model integration uses the 1860 fixed-year GHGNA radia-
tive forcings. The dashed-black lines are the standard deviation of the atmospheric/oceanic
temperature, computed by the 6-member ensemble.



Figure 4: Cartoon of how an ensemble filter updates the distribution for a scalar variable.
The upperleft reprsents the prior distribution derived from model ensemble integrations
starting from the previous assimilation results. The upperright represents an observational
distribution (usually Gaussian). An ensemble filtering process (lowerleft) combines the ob-
servational and prior distributions to form an updated ‘analyzed‘ distribution (lowerright)
realized by the ensemble member states that initialize next ensemble integrations.



Figure 5: Samples of vertical variations of the 20th-century oceanic observing network. Up-
per/lower panels are the locations of observational profiles deeper than 500m/1000m in
January 1986 (left) and 1991 (right). The background colors show the individual ocean
basins that are examined in this study.



Figure 6: Samples of vertical variations of the 21st-century oceanic observing network
(ARGO). Upper/lower panels are the locations of ARGO temperature (left) and salinity
(right) profiles deeper than 500m/1000m in January 2005.



Figure 7: Time series of the averaged oceanic temperature anomalies of top 700 m for indi-
vidual ocean basins and the world ocean in the 3 free model simulations and 4 ODA exper-
iments (see section 3). One of free model simulation, the GFDL IPCC historical simulation
(plotted by black lines) is sampled by the 20th-century or 21st-century oceanic observing
network to form ‘observations’ for ODA, and serves as the target of 4 assimilations: Exp-
ICcQ0NXBT (dashed-red), Exp-ICcQtNXBT (solid-red), Exp-ICfQtNXBT (dashed-blue) and
Exp-ICfQtNARGO (solid-blue). Other two free model simulations – Ctl-ICcQ0 and Ctl-ICfQt

– are plotted by the dashed- and solid-green lines as the reference of assimilation evaluation.



Figure 8: Same as Fig. 7 but for top 2000 m.



Figure 9: Differences of the time means for 1991-2000 and 1981-1990 of the top 700 m ocean
temperature of the truth (a), and the assimilation errors of the difference in Exp-ICcQ0NXBT

(c), Exp-ICcQtNXBT (d), Exp-ICfQtNXBT (e) and Exp-ICfQtNARGO (f). The errors of a
control case, Ctl-ICfQt, also are exhibted in panel b as a reference for assimilation evaluation.
The contour interval is 0.1oC, the 0-line is omitted and the dashed is negative.



Figure 10: Same as Fig. 9 but for the top 2000 m ocean and the contour interval is 0.05oC.



Figure 11: Same as Fig. 7 but for the salinity.



Figure 12: Same as Fig. 8 but for the salinity.



Figure 13: Time series of salinity anomalies averaged at the tropical Pacific (5oS-5oN) of
top 200 m in the truth (black), 2 control free model runs (dashed-green for Ctl-ICcQ0 and
solid-green for Ctl-ICfQt) and 4 ODA experiments: Exp-ICcQ0NXBT (dashed-red), Exp-
ICcQtNXBT (solid-red), Exp-ICcQ0NXBT (dashed-blue) and Exp-ICfQtNARGO (solid-blue).



Figure 14: Same as Fig. 10 but for the salinity and the contour interval is 0.01 PSU.



Figure 15: Time series of the assimilated oceanic temperature/salinity (upper/lower)
RMS errors, computed in the North Atlantic (20o-70oN) of top 2000 m, in Exp-
ICcQ0NXBT (dashed-red), Exp-ICcQtNXBT (solid-red), Exp-ICfQtNXBT (dashed-blue) and
Exp-ICfQtNARGO (solid-blue). The corresponding RMS time series for 2 control free model
runs (dashed-/solid-green for the Ctl-ICcQ0/Ctl-ICfQt) are plotted as the reference of as-
similation.



Figure 16: Time series of the averaged oceanic temperature (left) and salinity (right) in the
north (20o-70oN) Atlantic over the upper (200-1000m, top panels) and lower (1000-5000m,
bottom panels) portions of the North Atlantic meridional overturning circulation.


